222 research outputs found

    Regulatory motif discovery using a population clustering evolutionary algorithm

    Get PDF
    This paper describes a novel evolutionary algorithm for regulatory motif discovery in DNA promoter sequences. The algorithm uses data clustering to logically distribute the evolving population across the search space. Mating then takes place within local regions of the population, promoting overall solution diversity and encouraging discovery of multiple solutions. Experiments using synthetic data sets have demonstrated the algorithm's capacity to find position frequency matrix models of known regulatory motifs in relatively long promoter sequences. These experiments have also shown the algorithm's ability to maintain diversity during search and discover multiple motifs within a single population. The utility of the algorithm for discovering motifs in real biological data is demonstrated by its ability to find meaningful motifs within muscle-specific regulatory sequences

    "Going back to our roots": second generation biocomputing

    Full text link
    Researchers in the field of biocomputing have, for many years, successfully "harvested and exploited" the natural world for inspiration in developing systems that are robust, adaptable and capable of generating novel and even "creative" solutions to human-defined problems. However, in this position paper we argue that the time has now come for a reassessment of how we exploit biology to generate new computational systems. Previous solutions (the "first generation" of biocomputing techniques), whilst reasonably effective, are crude analogues of actual biological systems. We believe that a new, inherently inter-disciplinary approach is needed for the development of the emerging "second generation" of bio-inspired methods. This new modus operandi will require much closer interaction between the engineering and life sciences communities, as well as a bidirectional flow of concepts, applications and expertise. We support our argument by examining, in this new light, three existing areas of biocomputing (genetic programming, artificial immune systems and evolvable hardware), as well as an emerging area (natural genetic engineering) which may provide useful pointers as to the way forward.Comment: Submitted to the International Journal of Unconventional Computin

    A Hormone-Inspired Arbitration System For Self Identifying Abilities Amongst A Heterogeneous Robot Swarm

    Get PDF
    Current exploration of adaptation in robot swarms requires the swarm or individuals within that swarm to have knowledge of their own capabilities. Across long term use a swarms understanding of its capabilities may become inaccurate due to wear or faults in the system. In addition to this, systems capable of self designing morphologies are becoming increasingly feasible. In these self designing examples it would be impossible to have accurate knowledge of capability before executing a task for the first time. We propose an arbitration system that requires no explicit knowledge of capability but instead uses hormone-inspired values to decide on an environmental preference. The robots in the swarm differ by wheel type and thus how quickly they are able to move across terrain. The goal of this system is to allow robots to identify their strengths within a swarm and allocate themselves to areas of an environment with a floor type that suits their ability. This work shows that the use of a hormone-inspired arbitration system can extrapolate robot capability and adapt the systems preference of terrain to suit said capability.</p

    Special Issue on Toward Autonomous Evolution, (Re)production, and Learning in Robotic Ecosystems

    Get PDF

    Hierarchical strategies for efficient fault recovery on the reconfigurable PAnDA device

    Get PDF
    A novel hierarchical fault-tolerance methodology for reconfigurable devices is presented. A bespoke multi-reconfigurable FPGA architecture, the programmable analogue and digital array (PAnDA), is introduced allowing fine-grained reconfiguration beyond any other FPGA architecture currently in existence. Fault blind circuit repair strategies, which require no specific information of the nature or location of faults, are developed, exploiting architectural features of PAnDA. Two fault recovery techniques, stochastic and deterministic strategies, are proposed and results of each, as well as a comparison of the two, are presented. Both approaches are based on creating algorithms performing fine-grained hierarchical partial reconfiguration on faulty circuits in order to repair them. While the stochastic approach provides insights into feasibility of the method, the deterministic approach aims to generate optimal repair strategies for generic faults induced into a specific circuit. It is shown that both techniques successfully repair the benchmark circuits used after random faults are induced in random circuit locations, and the deterministic strategies are shown to operate efficiently and effectively after optimisation for a specific use case. The methods are shown to be generally applicable to any circuit on PAnDA, and to be straightforwardly customisable for any FPGA fabric providing some regularity and symmetry in its structure

    Embedded Social Insect-Inspired Intelligence Networks for System-level Runtime Management

    Get PDF
    Large-scale distributed computing architectures such as, e.g. systems on chip or many-core devices, offer advantages over monolithic or centralised single-core systems in terms of speed, power/thermal performance and fault tolerance. However, these are not implicit properties of such systems and runtime management at software or hardware level is required to unlock these features. Biological systems naturally present such properties and are also adaptive and scalable. To consider how these can be similarly achieved in hardware may be beneficial. We present Social Insect behaviours as a suitable model for enabling autonomous runtime management (RTM) in many-core architectures. The emergent properties sought to establish are self-organisation of task mapping and systemlevel fault tolerance. For example, large social insect colonies accomplish a wide range of tasks to build and maintain the colony. Many thousands of individuals, each possessing relatively little intelligence, contribute without any centralised control. Hence, it would seem that social insects have evolved a scalable approach to task allocation, load balancing and robustness that can be applied to large many-core computing systems. Based on this, a self-optimising and adaptive, yet fundamentally scalable, design approach for many-core systems based on the emergent behaviours of social-insect colonies are developed. Experiments capture decision-making processes of each colony member to exhibit such high-level behaviours and embed these decision engines within the routers of the many-core system

    Power loss and hotspot analysis for photovoltaic modules affected by potential induced degradation

    Get PDF
    Potential-induced degradation (PID) of photovoltaic (PV) modules is one of the most severe types of degradation in modern modules, where power losses depend on the strength of the electric field, the temperature and relative humidity, and the PV module materials. Previous studies have only considered single effects of PID; however, this work investigates the power losses, development of hotspots, mm-level defects, and the performance ratio (PR) of 28 PID affected PV modules. Following a standard PID experiment, it was found that (i) the average power loss is 25%, (ii) hotspots were developed in the modules with an increase in the surface temperature from 25 to 45 °C, (iii) 60% of the examined PV modules failed the reliability test following IEC61215 standard, and (iv) the mean PR ratio is equivalent to 71.16%

    Optical Filter Design for Daylight Outdoor Electroluminescence Imaging of PV Modules

    Get PDF
    This paper presents an advanced outdoor electroluminescence (EL) imaging system for inspecting solar photovoltaic (PV) modules under varying daylight conditions. EL imaging, known for its effectiveness in non-destructively detecting PV module defects, is enhanced through specialized optical filters. These filters, including a bandpass filter targeting EL emissions and a neutral density filter to reduce background light, significantly improve the system’s signal-to-noise ratio (SNR). The experimental results demonstrate the system’s enhanced performance, with superior clarity and detail in EL emissions, enabling precise defect localization and characterization at the cellular level. Notably, the system achieves an SNR improvement, with values consistently above two, outperforming previous systems and confirming its suitability for efficient solar PV maintenance and diagnostics. This research offers a flexible approach to optimizing EL imaging quality across various solar irradiance levels and angles, essential for improved PV module performance and reliability. The system effectively handles different PV module configurations, orientations, and types, including monofacial and bifacial arrays. It showcases robust imaging capabilities under high solar irradiance and different sun illumination levels, maintaining high-quality imaging due to its optimized filter design. Additionally, the system’s adaptability in detecting EL emissions from series-connected PV modules is highlighted, demonstrating its comprehensive evaluation capabilities for PV array performance

    Photovoltaic Bypass Diode Fault Detection using Artificial Neural Networks

    Get PDF
    Due to the importance of determining faulty bypass diodes in photovoltaic systems, faulty bypass diodes have been of widespread interest in recent years due to their importance to improving PV system durability, operation, and overall safety. This paper presents new work in developing an artificial intelligence (AI) based model using the principles of artificial neural networks (ANN) to detect short and open PV bypass diodes fault conditions. With only three inputs from the PV system, namely the output power, short-circuit current, and open-circuit voltage, the developed ANN model can determine whether the PV bypass diodes are defective. In the experimentally validated case of short and open bypass diodes, 93.6% and 93.3% of faulty bypass diodes can be detected. Furthermore, the developed ANN model has an average precision and sensitivity of 96.4% and 92.6%, respectively

    From Bidirectional Associative Memory to a noise-tolerant, robust Protein Processor Associative Memory

    Get PDF
    AbstractProtein Processor Associative Memory (PPAM) is a novel architecture for learning associations incrementally and online and performing fast, reliable, scalable hetero-associative recall. This paper presents a comparison of the PPAM with the Bidirectional Associative Memory (BAM), both with Kosko's original training algorithm and also with the more popular Pseudo-Relaxation Learning Algorithm for BAM (PRLAB). It also compares the PPAM with a more recent associative memory architecture called SOIAM. Results of training for object-avoidance are presented from simulations using player/stage and are verified by actual implementations on the E-Puck mobile robot. Finally, we show how the PPAM is capable of achieving an increase in performance without using the typical weighted-sum arithmetic operations or indeed any arithmetic operations
    • …
    corecore